
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

Plasma Liners and the Potential for a 
Standoff Magneto-Inertial Fusion Reactor 

Scott C. Hsu, Physics Division 
(scotthsu@lanl.gov) 

ARPA-E Fusion Workshop 
Berkeley, CA 

Oct. 29–30, 2013 

LA-UR-13-28241 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA October 2013  |  UNCLASSIFIED  |  2 

The focus of this talk 

§  Is on a fusion energy driver that can potentially 
–  Access the “sweet spot” in fusion parameter space 
–  Provide a low-cost (i.e., <$500M) R&D path to single-

shot reactor-relevant gain 
–  Offer an attractive reactor concept, ultimately 

providing competitive cost-of-electricity (COE) 
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Outline 

§  What is standoff and why do we want it? 
§  Standoff embodiment of magneto-inertial fusion 

(MIF) using plasma liners 
–  Parameter space 
–  Forming plasma liners via an array of supersonic 

plasma jets launched by plasma guns (PJMIF) 
–  PJMIF reactor considerations 

§  Development path 
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What is a standoff driver and why do we 
want it? 

§  Standoff places ALL compression driver and target formation 
hardware far enough away from location of fusion burn to 
eliminate repetitive hardware destruction 

§  Easier working conditions à higher shot rate 
–  Lower R&D cost 
–  Faster rate of scientific progress (100’s if not 1000’s of shots ultimately 

needed to identify and overcome problems for MIF) 
–  More diagnostic access and possibilities (also needed for identifying/solving 

problems) 

§  More reactor friendly (next slide) and more attractive & 
plausible to potential sponsors/investors as a path to fusion 
energy 
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Standoff’s ultimate purpose is to 
improve power plant economics 
Standoff allows higher repetition rate and 
lower yield per shot  à greatly simplifies 
reactor engineering 

Assumes electrical conversion efficiency=0.35, recirculating power fraction=0.3, market value of electricity=$0.05 per kw-h. 

Without standoff à hardware cost per shot 
quickly erodes power plant revenue 
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MIF seeks to access “sweet spot” in 
thermonuclear fusion parameter space 

Mfuel ~ few mg 
Rfuel ~ 1 cm 
Efuel ~ several MJ 
Pheat ~ 0.1 TW 
Driver cost<$100M 

Minimum facility cost (US$) for magnetized fuel satisfying Lawson condition: 

Figure and parameters are from Ref. 7. 
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Plasma liner AND its source together constitute a 
standoff driver for compressing magnetized 
plasma to fusion conditions near the “sweet spot” 

~20 cm 
at initiation of target compression 

magnetized 
target 

plasma 
liner 

§  Plasma liner ram pressure (ρv2)  
compresses target to fusion 
conditions (~100 Mbar @ ~10 keV) 

§  Desired implosion will have: 
–  Cold, fast, high-Z liner, i.e., high Mach # 
–  Sufficient uniformity (target convergence ~ 10×) 
–  Liner thickness & profiles optimized for dwell 

(burn) time & energy gain 

Description of physics and related simulations in Refs. 1–6 (and references therein). 

Source hardware can be located several 
meters away. 
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Example§ from a 1D simulation:  Spherical 
burn configuration with energy gain* ≥ 20  

magnetized 
DT target 

spherical 
plasma 

liner 

~ 1 cm 

~ 1.5 cm 

DT 
“afterburner” 

(cold fuel 
layer) 

§  Target at peak compression 
–  n ≈ 5×21 cm-3, T ≈ 10 keV 
–  p ≈ 150 Mbar 
–  R ≈ 0.4 cm, M ≈ 5 mg 
–  B ≈ 300 T 
–  dwell time τ ≈ 0.3 µs 

§  These conditions would give 
(target only): 

–  ~8% fuel burn-up 
–  ~130 MJ fusion yield 

§  Xenon liner: 
–  ~25 MJ initial kinetic energy 
–  ~20 g @ 50 km/s 

§  DT afterburner increases the 
gain from target by 3× or more 

§from 1D hydrodynamic simulations with theoretically-based alpha-energy-deposition fraction (Ref. 8) 
*energy gain = (fusion energy)/(total initial plasma energy) 
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Plasma liners can potentially be formed by an 
array of merging supersonic plasma jets 
launched by plasma guns 

§  Jets launched by plasma 
guns at chamber periphery 

–  Merge into spherically 
imploding shell at merging 
radius rm 

§  Compatible standoff target 
assembly required* 

–  Option 1:  DT target formed 
separately (merging compact 
toroids or jets) 

–  Option 2:  DT placed at the 
leading edge of jets 

–  Both options may require novel 
standoff magnetization method 

More details in Refs. 4 and 9–11. 
*I will not discuss target assemblyà 
addressed in talks by J. Slough and 
D. Welch. Illustrations by D. van Doren, HyperV Technologies. 
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Plasma gun requirements are obtained by working 
backwards from desired fuel parameters 

Fuel requirement à Plasma liner requirementà Jet requirements (at rm) 
Energy ≈ 5 MJ ≈25 MJ 

(assuming compression efficiency ~20%) 
~40 MJ (all jets) 
(assuming electrical efficiency ~0.5–0.8) 

Pressure ~ 150 Mbar ρv2 ~ 150 Mbar 
(near peak compression) 

ρ0v0
2=ρ(rt/rm)2v2 ≈ 0.6 kbar 

(assuming rt/rm= 0.004m/2m=0.002 and 
v=constant; corresponds to nXe≈1017 cm-3 
and v=50 km/sàdetermines pulse length 
~10–20 µs) 

Temperature ~ 10 keV Implosion time (~rt0/v) << thermal 
loss time (~rt0

2/4D) 
v>>4D/rt0≈1 km/s 
(assuming rt0=4 cm and D=10 m2/s) 

Confinement time ~ 0.3 
µs 

Stagnation time ~ confinement time 
~ L/v 

L ≈ 1.5 cm  
(assuming v=50 km/s) 

All the above Mass ~ 20 g 
(assuming ρ~r—2  near peak compression) 

Mass/jet ~ 20–60 mg 
(for 300–1000 jets) 

All the above High Mach # to reduce spreading 
and to reach high pressure 

M=50 (Xe with Te=1 eV) 
(assuming v=50 km/s) 

Many assumptions based on the physics of spherical plasma liner implosions (Refs. 2,3,6); 
numbers used based on Ref. 8.  
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Contoured coaxial guns have been 
designed to achieve the needed jet 
parameters 

~0.5–1 m 
Contoured coaxial gun, F. D. Witherspoon et al. (Ref. 12) and talk at this workshop. 

§  Nominal, required jet 
initial parameters: 
–  Ljet≈5 cm 
–  n≈1018 cm-3 

–  V~50 km/s 
–  Mass~20–60 mg 
–  T~few eV 
–  Mach # >10 

§  PJMIF requires 
hundreds of guns 
operating at ~0.5–1 MA, 
very low impurity levels, 
and (likely) profile-
shaping ability 
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PJMIF reactor challenges are not as 
demanding as those of IFE 

Parameter / Issue PJMIF ICF Benefit 

Pulse repetition rate ~1 Hz ~10 Hz 
Eases chamber 
clearing and first wall 
engineering 

Fusion pulse time ~1 µs ~1 ns 
Lowers first wall 
temperature peaking 
and no x-ray burst 

Driver Robust plasma 
guns 

Vulnerable final 
optics Easier maintenance 

Driver to target hydro 
efficiency ~20% ~1% 

Decreases driver 
size/complexity and 
widens design space 

Driver cost / Plant cost ~1% ~30% Lower capital cost 
and COE 

Table courtesy of John Santarius (University of Wisconsin-Madison). 
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PJMIF reactor challenges 
§  Need repetitive pulsed power drivers (e.g., 3.2×107 

shots/year at ≤1 Hz operation) 
–  Example:  KrF IFE program solid-state switching (107 shots achieved at 5 Hz 

operation; see Ref. 13) 
–  Ideas to explore:  switchless operation, adapting LTD technology (see Mike 

Cuneo’s talk–this workshop), etc. 
–  Plasma guns need to survive fusion blast and operate with low impurity levels 

§  Solid, wetted, and liquid first walls are all viable options 
–  Low heat loading (<1 MW/m2 for 100 MW modular core with 6 m diameter) allows 

for solid & wetted wall concepts 
–  Surface vortex liquid flows envisioned for heavy ion beam fusion (Ref. 14) 

potentially well-suited for PJMIF; other liquid wall/blanket implementations 
possible 

–  Chamber clearing does not appear to be an issue 

§  Disposable components open up reactor design space 
–  Relatively cheap guns and accessibility allow regular component replacement, 

i.e., radiation resistant materials to MFE standards not necessary 
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PJMIF sample reactor energy flow 

Stored 
energy Liner/

target 

DT 
fusion 
burn 
(G=20) 

Neutron 
energy 

Alpha 
energy 

Direct 
conversion 

Thermal 
cycle 

Grid 

400 MJ 

100 MJ 

175 MJ-e 

75 MJ-e 

25 MJ 40 MJ 

200 MJ-e 
Lithium 
blanket burn 

125 MJ 

Other auxiliary power 
10 MJ-e 

Thermal plasma 
expansion 

250 MJ-e 

15 MJ 

$0.02/MJ over driver lifetime 
(assuming $15M driver cost 
per 30 million-shot driver 
lifetime at 25 MJ delivered 
per shot)  
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Proposed PJMIF development path to single-shot 
reactor-relevant gain (~$420M) 
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Closing remarks 

§  Standoff embodiment of MIF avoids destroying 
significant mass per shot 

–  Allows for higher repetition rate, cheaper and faster R&D development path, 
simpler reactor engineering, and better power-plant economics 

–  More attractive & plausible to potential sponsors/investors 
§  Plasma liner driven MIF has many attractive features: 

–  Higher implosion velocity than most liner-driven approaches 
–  Potential for liner profile shaping and multi-layered structure 
–  Magnetized target could be formed separately or in situ (more options à risk 

mitigation) 
–  Many possible sources could potentially be used to form imploding plasma liners 

(can benefit from transformative new technologies) 
–  Potential compatibility with thick liquid wall or presently available plasma-facing-

component (PFC) materials (avoids multi-$B, multi-decadal material 
development effort ßserious Achilles heel of fusion energy development) 

–  Plasma guns are economic candidate sources with many possible technological 
spinoffs 
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Proposed 30–60 plasma gun experiment 
to 1 Mbar (~2 MJ stored energy): Existing PLX facility with two plasma guns: 
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